PRINCIPLES OF ANALYSIS LECTURE 11 - LIM SUP AND LIM INF

PAUL L. BAILEY

1. LIM SUP AND LIM INF

Let $\{s_n\}_{n=1}^{\infty}$ be a sequence of real numbers. Define

$$\limsup s_n = \lim_{N \to \infty} \sup \{ s_n \mid n \ge 1 \}$$

and

$$\liminf s_n = \lim_{N \to \infty} \inf \{ s_n \mid n \ge N \}.$$

N

The sequence $\{\sup\{s_n \mid n \geq N\}_{N=1}^{\infty}$ is decreasing and the sequence $\{\inf\{s_n \mid n \geq N\}_{N=1}^{\infty}$ is increasing, so they both converge, or diverge to $\pm \infty$.

Proposition 1. Let $\{s_n\}_{n=1}^{\infty}$ be a bounded sequence of real numbers. Then $\liminf s_n \leq \limsup s_n$.

Lemma 1. Let $\{s_n\}_{n=1}^{\infty}$ and $\{t_n\}_{n=1}^{\infty}$ be sequences such that $s_n \leq t_n$ for every $n \in \mathbb{N}$. If they both converge, we have $\lim s_n \leq \lim t_n$.

proof of Lemma. Let $s = \lim s_n$ and $t = \lim t_n$; suppose by that t < s. Set $\epsilon = \frac{t-s}{2}$; then there exists $N_1 \in \mathbb{Z}^+$ such that $n \ge N_1$ implies $|s_n - s| < \epsilon/2$, and there exists $N_2 \in \mathbb{Z}^+$ such that $n \ge N_2$ implies $|t_n - s| < \epsilon/2$. Let $N = \max\{N_1, N_2\}$; then by and application of the triangle inequality, $t_n < s_n$, a contradiction.

proof of Proposition. For every $N \in \mathbb{Z}^+$, we have $\inf\{s_n \mid n \geq N\} \leq \sup\{s_n \mid n \geq N\}$. Thus the result is immediate from the lemma.

Date: September 15, 2003.

Proposition 2. Let $\{s_n\}_{n=1}^{\infty}$ be a sequence of real numbers. Then $\{s_n\}_{n=1}^{\infty}$ converges if and only if $\liminf s_n = \limsup s_n$, in which case $\liminf s_n = \limsup s_n = \limsup s_n$.

Lemma 2. Let $x, y \in \mathbb{R}$. If $x \leq y + \epsilon$ for every $\epsilon > 0$, then $x \leq y$.

Proof. Suppose that x > y, and let $\epsilon = \frac{x-y}{2}$. Then $y + \epsilon = x - \epsilon$, so $x > y + \epsilon$. \Box *Proof.*

 (\Rightarrow) Suppose that $\{s_n\}_{n=1}^{\infty}$ converges to a real number s. Let $\epsilon > 0$. We wish to show that $\limsup s_n \leq s + \epsilon$ for every $\epsilon > 0$, whence $\limsup s_n \leq s$.

Since $s_n \to s$, there exists $N \in \mathbb{Z}^+$ such that $|s_n - s| < \epsilon$ for $n \ge N$. Then $\sup\{s_n \mid n \ge N\} < s + \epsilon$. Since $\{\sup\{s_n \mid n \ge N\}\}_{N=1}^{\infty}$ is a decreasing sequence, we have $\limsup s_n < s + \epsilon$. Therefore $\limsup s_n \le s$.

Similarly, $s \leq \liminf s_n$, so

$$s \leq \liminf s_n \leq \limsup s_n \leq s,$$

 \mathbf{SO}

$$\liminf s_n = s = \limsup s_n.$$

(\Leftarrow) Now suppose that $\liminf s_n = \limsup s_n$, and label this common value s. We want to show that $\lim s_n = s$.

Let $\epsilon > 0$. Since $s = \limsup s_n$, there exists $N_1 \in \mathbb{Z}^+$ such that

$$|\sup\{s_n \mid n \ge N_1\} - s| < \epsilon.$$

In particular, $\sup\{s_n \mid n \geq N_1\} < s + \epsilon$, so $s_n < s + \epsilon$ for $n \geq N_1$. Similarly, since $s = \liminf s_n$, there exists $N_2 \in \mathbb{Z}^+$ such that $s_n > s - \epsilon$ for $n \geq N_2$. Let $N = \max\{N_1, N_2\}$. Then for $n \geq N$, we have $s - \epsilon < s_n < s + \epsilon$, that is, $|s_n - s| < \epsilon$. Thus $s_n \to s$.

Department of Mathematics and CSCI, Southern Arkansas University E-mail address: plbailey@saumag.edu